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By combining static and dynamic properties (Mw, A2, kd, Rg and Rh) of poly(1,4-phenyleneterephthalamide), 
PPTA (commercially known as Kevlar), with a detailed analysis of measured time correlation functions at 
different scattering angles in dilute solution, we have been able to estimate the molecular weight dependence of 
the radius of gyration, Rg(M), the persistence length p (~ 290 A), and the molecular weight, distribution 
(Mz:Mw:Mn~6.2:l.8:l) using an unfractionated PPTA sample (Mw=4.3×104 g/mole). Laplace 
inversion of the time correlation function was accomplished independently by means of two different 
algorithms: the singular value decomposition technique with discrete multi-exponentials to approximate the 
normalized characteristic linewidth distribution function G(F) and the method of regularization whereby a 
linearized smoothing operator was used. The non-intrusive laser light scattering technique permits us to 
characterize, for the first time, the molecular weight distribution of PPTA which has been difficult to perform 
by means of other more established methods, such as size exclusion chromatography, because of the corrosive 
nature of solvents used in preparing PPTA solutions. 

(Keywords: 

INTRODUCTION 

In the previous paper, wa characterized the solution 
properties of poly(l,4-phenyleneterephthalamide), PPTA, 
in concentrated sulphuric acid (with and without the 
addition of a small amount of K2SO4) using light 
scattering intensity and linewidth measurements. We 
need the main result (D)zOC/~tw°'75 cm 2 s -1 with Mw 
expressed in [g/mole] in order to achieve an empirical 
transform from a distribution of translational diffusion 
coefficients to a molecular weight distribution. In this 
paper, the essential steps are to perform a Laplace 
inversion of the measured time correlation function and 
to take into account the effects of particle scattering, 
interaction and internal motions at finite scattering angles 
and concentrations so that we can obtain a simultaneous 
estimate of the persistence length and the molecular 
weight distribution. We used ko = 2.07 x 10-s, instead of 
2.11x10 -s, in the empirical relation Do=kDM -°'75 
because of a possible difference in size for PPTA in 96j°/ 
H2SO4 with and without K2SO 4. 

LAPLACE TRANSFORM 

The instrumentation used in photon correlation 
spectroscopy (PCS) (or fast Fourier transform (FFT) 
spectral analysis) has gone through an era of considerable 

* Author to whom requests for reprints should be addressed. 

improvement, making it possible to accumulate auto- 
correlation (or power spectrum) profiles with extremely 
high signal to noise ratios. Consequently, we can obtain 
an accurate description of the distribution of 
characteristic decay times, F, which can be related to 
molecular parameters of interest. 

In a self-beating experiment, under Gaussian 
conditions, the single-clipped photo-electron count auto- 
correlation function can be related to the first-order 
normalized electric field correlation function g~(z) by the 
Siegert relation 

a~21(r)=N~(n~)(n)(1 + fllgt~'(r)] 2) (1) 

where (nk) and (n)  are the mean clipped and unclipped 
counts pei" sample time, N~ is the total number of samples, 
and k is the clipping level. The constant fl accounts for the 
spati~,l averaging taking place at the detector and is 
normally treated as an unknown parameter to be deter- 
mined by the analysis routines. The quantity 
N~(n)(nk) [ = A] represents the baseline associated with 
the function G~2~(z). For scatters undergoing only 
Brownian motioias the function gin(z) is related to the 
characteristic linewidth distribution G(F) through a 
Laplace transform 

= I G(F) e -r~ dF (2) g(1)(r) 
t /  
0 

The problem of correlation function profile analysis 
therefore consists of inverting the Laplace transform. The 
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more detailed procedures are presented because the 
inversion is an essential and crucial step in our data 
analysis. 

From equation (1) we see that the net unnormalized 
electric field autocorrelation function, 
(Afl)l/z.q(l)(z)=(G~kZl(r)-A)l/2=-bl, is the experimental 
quantity of interest. We have found that in order to 
obtain a distortion-free G(F) the quantity A must be 
known to within 0.2% and that errors greater than that 
will preclude meaningful analysis yielding no more than 
the average linewidth F and its variance Ftz/F 2 where 
tt 2 = ~G(FJ(F- F)ZdF. 

Nature of  the problem 
Equation (2) is a Fredholm integral equation of the first 

kind and as such the associated inversion problem is 
notoriously ill-conditioned when the data are corrupted 
by noise. This inversion problem is endemic in the 
physical sciences and has received much attention in 
recent years 1 - 12. The reader is advised to refer to specific 
topics in chapters of two recent books 1°'1t dealing with 
linewidth polydispersity analysis for details. In the 
absence of systematic errors, noise becomes the sole 
obstacle to perfect restoration. Thus, for noisy data, the 
amount of information that can be retrieved may be 
severely limited. Any attempt to extract information 
beyond this limit may lead to physically unreal solutions. 
Correct inversion of equation (2) therefore must involve 
some means of restricting the amount of information that 
is sought; this can be done in the following ways: 

(1) defining the problem in terms of a restricted set of 
information elements 2'12, 

(2) using regularization techniques to seek smooth 
soNtions v, 

(3) truncating the singular function expansion of the 
solution 9. 

McWhirter and Pike 2, by decomposing the inversion 
problem of equation (2) in terms of the singular functions 
of the Laplace kernel, have shown that the maximum 
amount of information that can be recovered depends 
strongly on the level of noise in the data, and that in 
practice this information may be severely limited since the 
eigenvalues of the Laplace kernel fall below the level of 
noise very rapidly. Unfortunately a complete knowledge 
of the noise process is usually not available. Further 
improvements in restoring G(F) can be achieved by the 
use of additional a priori knowledge of G(F). The singular 
value decomposition technique 13- 15 provides a means of 
determining the information elements of the actual 
problem (including constraints) and, by ordering these 
elements in decreasing importance, is a useful method 
which can estimate the amount of information retrievable 
for a given problem. 

Regularization methods seek least squares 
minimization solutions to equation (2) subject to 
additional a priori constraints which restrict the set of 
possible solutions. These a priori constraints such as 
postivity prove useful in enhancing the known features of 
the distribution. One such scheme has been described 
elsewhere I O. 

Singular value decomposition technique 

In general, we seek solutions to equation (2) that 
minimize the L 2 norm of the discrepancies between the 

discretely sampled data points bi and the corresponding 
values that would be calculated from our solution subject 
to the requirement that the solution be well behaved. The 
linear least squares minimization problem can be stated 
a s  

CP~-b (3) 

where P is the parameter vector of length n, C is the (m x n) 
curvature matrix, and b is the data vector of length m.m 
and n are respectively the number of data points in the net 
correlation function and the number of adjustable para- 
meters of the model. The symbol - in equation (3) is 
intended to imply solution of the overdetermined set of 
equations subject to the least squares criterion 
(minimization of the Euclidean norm of the residual 
vector lib - CPll ). The multiexponential method chooses a 
mathematically convenient form to approximate G(F) 
that results in an overdetermined set of equations 

G(F)=~ Pjb(F- F~) (4) 
J 

This model leads to either a linear or nonlinear problem 
depending on whether or not the model for G(F) is 
allowed to float in F-space. As the number of adjustable 
parameters increases, however, the problem rapidly 
becomes more susceptible to the ill-conditioning of 
equation (2), and one must be careful to include some form 
of rank reduction step in the analysis procedure. We have 
found the singular value decomposition technique quite 
helpful. 

Substituting the model (equation (4)) into equation (2) 
gives 

bi=~ Pj exp(-  Fjzi) (5) 
J 

The elements of C can be determined from a comparison 
of equations (2) and (4) with equation (3) to be 

cq=e-Vf i  (6) 

where i and) are the row and column indices, respectively, 
and the parameters to be determined are the Pi, i.e. the 
weighting factors of the 6 functions (see equation (4)). 

In the multiexponential analysis we have used 
logarithmically spaced values of F representing the 
optimum spacing for sampling of functions of the 
exponential type 3. In addition, it is important to keep in 
mind that although the output of the singular value 
decomposition algorithm can be a large number of 
parameters (typically 20), this does not mean that 20 
independent parameters have been recovered from the 
data. Indeed, the P vector is reconstructed from a limited 
number (k, typically 3 or 4) of basis function. 

Additional a priori constraints such as positivity can be 
introduced into the solution. Linear constraints can be 
incorporated as described in the section below on 
methods of regularization (see equation (26)). 
Implementation of nonlinear constraints such as 
positivity requires great care, as one should be aware of 
exactly how much improvement in the ill-conditioning 
has been effected. 

Prescaling the columns of C to unit norm has been used 
to improve the numerical stability of the inversion (see for 
example, Lawson and Hanson (ref. 15, pp. 185-188). The 
scaling transforms equation (3) to 
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where 

and 

Ax"~b (7) 

A =CH (8) 

x = H - I P  (9) 

with H being a diagonal matrix whose nonzero elements 
are the reciprocals of the norms of the corresponding 
column of C, 

The singular value decomposition consists of applying 
orthogonal transformations to the matrix A such that 
equation (7) becomes 

U S V - l x = b  (11) 

Here S is a diagonal matrix whose nonzero elements are 
the ordered singular values of the problem. Details of the 
algorithm may be found in Lawson and Hanson 15, as well 
as FORTRAN-IV code to implement the decomposition. 
Defining the new vectors y and g by 

x=  Vy (12) 

and 
g = Urb, (13) 

we have 

Sy=g. (14) 

Since S is diagonal, we have immediately 

Yl = 9.,/sii. (I 5) 

It is at this point that the rank-reduction step is applied. 
The singular values s,, being the square roots of the 
eigenvalues of the matrix A ' A ,  are closely related to the 
information elements transmitted through the integral 
operator of equation (2). Those singular functions whose 
singular values are above the noise level should be 
included in the expansion of the solution vector. The 
problem is said to be of pseudorank k, k being the number 
of terms in the expansion. If k is known, we can compute 
the pseudoinverse of S, S +, placing zeros in the locations 
ofS + corresponding to those singular values buried in the 
noise. However, we do not usually know the experimental 
noise level, hence k is unknown. We therefore define a set 
of 'candidate solutions' {X (k)} from equation (12) as 

X (g) = Vy (k) (16) 

where 

f f ) =  [Odsi, for l <<.i<~k 
(17) 

for k<i<~n 

From equation (9) we have a set of candidate solutions for 
the original P vector of equation (3) defined by 

p(k) ~_ HX(k) (18) 

with a corresponding set of residual v e c t o r s  {r (k)} such 
that 

r(k~= CP (k)- b (19) 

There are several criteria for the selection of the 
particular value of k that can be applied (see chapters 25 
and 26 of Lawson and Hanson 15). One that we have found 
useful is to examine a plot of lnllpk)l] vs. lnllp~k)[]. We 

endeavour to select k such that !tr'k'll is 'sufficiently small' 
without [[UkJl] getting 'too large'. This is directly 
analogous to the 'energy' constraint of some regular- 
ization methods. 

Methods of  regularization 

Equation (2) belongs to the general class of linear 
Fredholm integral equations of the first kind 

i 
Fraax 

/)(z) = K(z, F)G(F) dE, 0 < z < ~ (20) 
JFmin 

where G(F) is the distribution function to be determined, 
K(z, F) is a general kernel which i_n the case of the Laplace 
transform is given by e -r~, and b(z) is the noise free data 
function. We present the method in terms of continuous 
functions; extension to the discrete case is straightforward 
and discussed in Chu et al.17. The regularization methods 
impose stability on the solution by the use of reasonable 
constraints and have been the subject of many 
studies ls-22. The original problem is transformed into 
one possessing the desired properties. It should be noted 
that this method is not the only means of restoring 
stability to the ill-posed problem. For example, one may 
regularize such a problem by changing the definition of 
what is meant by ill-posed. A discussion of this is given by 
Nashed 22. 

Abbiss et al. 23 used the methods of Tikhonov and 
Miller ls'19 to derive iterative and non-iterative 
regularized solutions for the inversion of a similar 
equation which arises in Fourier optics and in the 
extrapolation of band-limited signals. Following the steps 
outlined in Abbiss et al. 23 we introduce the function r(z) to 
account for the perturbation to the data (e.g. additive 
noise). Equation (20) becomes 

i 
rmax 

b(v)[=b(z)+r(v)]= K ( ~ , r ) G ( r ) d r + r ( z )  (21) 
flYmin 

or, in operator form, 

b = KG + r (22) 

In the absence of a priori knowledge of r(z) one might 
attempt to solve the problem 

b =K~b (23) 

for the distribution q~, assuming this to be 'close to', in 
some sense, the true distribution G. Indeed, the singular 
value technique described previously takes this approach. 
However, one must be careful to account for the ill- 
posedness of the problem, as the solution ~b is extremely 
sensitive to small perturbations in b. The rank reduction 
step of the singular value decomposition approach is 
crucial to restricting this sensitivity; without it the 
solution ~b may bear no resemblance to the true distri- 
bution G. The regularization technique solves a related 
equation whose solution responds stably to perturbations 
in the data and yet is constrained to be close to the true 
distribution G. 

Following Abbiss et al. 23 we minimize the following 
functional: 

F(u)= jpb- KuN2 +cttlCujJ 2 (24) 

where u represents the possible set of functions satisfying 
equation (24), cc is a small positive quantity referred to as 
the regularization parameter, C is a linear constraint 
operator with a bounded inverse, and PlhJP denotes the L 2 
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norm of h(x) on [x,, x2] 

llh1(2= 
s 

-” lh(x)12dx 
‘i2 

(25) 

We assume G and b to be square integrable function on 
[r,i,, I-,,,] and on [0, co] respectively. Taking C to be the 
identity operator, it is apparent that equation (24) 
represents the minimization of the residual norm 
J/b--Ku/J subject to the condition that the norm of the 
solution /Iu 11 be finite. Additional a priori knowledge may 
be incorporated by suitable choice of C. By the 
application of variational calculus24 the minimum of 
equation (24) can be shown to occur for that estimate G 
which is the solution of the equation 

[K*K+aC*C]G=K*b (26) 

where the * denotes the adjoint operator25. We describe 
an iterative means of solving equation (26) that allows 
incorporation of the (nonlinear) positivity constraint. 
R_ew@ing equation (26) in the form 
G=G+K*b-[K*K +aC*C]G suggests the iterative 
scheme, 

GcN)=K*b+[(l -,$&K*K]c’N-l) (27) 

where we have taken C to be the identity operator, I. Th_e 
notation C(N) represents the Nth iteration estimate of G. 
The convergence of equation (27) is guaranteed if the 
norm of the operator [( 1 - cc)1 - K*K] is strictly bounded 
by unity for all c1< 1. Using the singular values of the 
Laplacian kernel computed by Bertero et a1.12, it can be 
shown that equation (27) in the limit of infinite iterations 
converges to the solution of equation (26). At this point, it 
should be noted that the convergence of an iterative 
sequence to a well-behaved solution, by itself, is not a 
sufficient condition to establish regularization. One must 
show that the solution G tends to the true distribution G 
as the noise on the data tends to zero. Chu et a/.” 
establish this convergence by presenting a singular 
function decomposition of the solution. It is also shown 
that the number of iterations N can be used to restrict the 
unregularized (cr=O) solution to a finite set of singular 
values, analogous to the rank reduction step of the 
singular value decomposition method. 

In the case of the Laplace inversion, we have 

! 

rmar 
(KG)(z) = e-“G(T) dT, O<r< x, (28) 

rmln 

(K*b)(r) = 
J’ 

1o e-“b(r) dz, rmin < r < rmax (29) 

Therefore, 

(K*KG)i)={: e-“dt 1:’ e-“G(z)dz 

By changing the order of integration we find 

(K*KG)(I-)= i’ 
r,,, 1 

__ G(z) dz 
rmin r+z 

In the analysis of real data, the measurement of b(t) will be 
confined to r,,,,” <T < T,,,,~. Equation (29) becomes 

(K*b)(T)= e-“b(z) dT, rmin < r < r,,, (30) 

Therefore, 
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_i 

rmar (K*KG)(r)= e-‘m~~(r+z’-e-‘m~~(r+*~ G(z)dz(31) 

rmin r+4 

Equations (27), (30) and (3 1) can be used to implement 
the iterative scheme for recovering the characteristic 
linewidth distribution function from the experimental 
data. The iterative sequence in equation (27) is used to 
estimate the Nth approximation to G(T). The initial 
estimate c(O) can be taken to be (K*b)(T); alternatively 
one may use estimates obtained from other techniques 
such as the singular value decomposition approach. The 
choice of c(, rmln and r,,, is straightforward and can be 
achieved in an automated procedure without user inter- 
action. The regularization parameter is a function of the 
level of noise in the data, that is, c(=E” with 1) < 1. 
Predicting the optimum choice of CL, assuming one exists, 
requires knowledge of the characteristics of the linewidth 
distribution to be recovered as well as that of the noise 
process. When close to unity, a has the effect of completely 
suppressing noise but unfortunately at the expense of 
smoothing the characteristic linewidth distribution to be 
recovered. Values close to zero allow the propagation of 
noise through the solution. A sufficient guideline is that CI 
be as close to zero as possible in order to allow the 
maximum amount of information to be retrieved from the 
data while still retaining the stability of the solution. 
Fisher’s statistic test has been used in another regularized 
scheme16 for determining the optimum solution. 

A PRACTICAL PROCEDURE FOR 
CORRELATION FUNCTION PROF 
ANALYSIS 

‘ILE 

Baseline considerations 

In the previous discussion, we have noted that estimates 
on G(T) are accessible if we have very precise time 
correlation function data and know the limitation of 
Laplace inversion due to its ill-conditioned nature. 
Experimentally, our measurements were always 
performed at finite concentrations and scattering angles. 
Therefore, in order to determine a representative distri- 
bution of translational diffusion coeficients where 
Tj=DjK2 with j being a representative component, we 
needed to extrapolate a distribution of characteristic 
decay times G(T) to ‘zero’ scattering angle and zero 
concentration. As the G(T) distributions were estimates, 
we used the same inversion procedure so as to reduce 
systematic error differences. Furthermore, based on 
physical arguments, we took the PPTA molecular weight 
distribution to have both low and high molecular weight 
cut-offs, even though we do not know the exact cut-off 
values. For example, it is reasonable to assume that the 
molecular weight of PPTA must be greater than that of its 
monomer. We have, however, not set an upper bound 
because of possible aggregation in PPTA solutions. 
Nevertheless, for PPTA samples in Part 1 with 
1.4 x 1 O4 < M, < 4.8 x 1 O4 g/mole, there must be an upper 
bound in the molecular weight distributions. In order to 
determine the upper and lower bounds of G(K,T) in a 
systematic way, we have added a constraint to the 
equation 

G(K, r)=C Pj(K)6(r-rj) 
i 

(32) 
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such that the ratios of G(F1)/G(F2) and G(Fu)/G(Fu_ 1) i.z 
are about 1%, signifying well defined values of  l"max('-~ ['S) 
and Fmi.(--~Fx). It should be noted that we have.not'made 
precise determinations of Fm,x and Fmi n whose values are 
governed by the ill-considered nature of the Laplace ~ o8 
transform. Rather, we aim to determine a consistent set of 
Fm~, and Fmax values of G(F) over a range of scattering ~- 

t ~  

angles. The 1% criterion is also not important as shall be 
demonstrated later. Introduction of this a priori .~, 04 

t o  

knowledge permits us to relax requirements for '2 
agreement between the measured baseline, 
A f l l g m(z ~ ) ] 2 ,  and the computed baseline, N~(nk)(n ). 
In other words, if we observed a disagreement between 
measured and computed baseline of the order of a few 
tenths of one percent, say 0.2%, we cannot only accept 
such data but also permit baseline adjustments within the 
statistical error limits (~0.1%) so long as the resultant 
G(F) satisfies our a priori knowledge on the form of the 
characteristic decay time distribution. Such a relaxation g 
in the constraint of the precision required in measured 
data can lead to serious errors without a proper under- 
standing of the ill-conditioned problem in the Laplace ~, oo 
transform. What we have claimed is not that our _g 
correlation function profile analysis requires a floating 
baseline in order to achieve the desired results, but that 
from physical arguments, we know our measured data to 
contain small (within statistical error limits of the 
baseline) amounts of large particles which have not been -0.2 
removed by standard solution clarification procedures, oo 
The presence of a trace amount of such large particles 
interferes with our data analysis. We claim that we can 

90 
still make use of slightly imperfect data if the amount of 
such large particles present is very small, so small that its 
contribution to the time correlation function falls within 
the statistical error limits of our baseline measurements. If 6o 
we were to clarify our polymer solutions more carefully, 
we can obtain identical results in G(F) without floating 
the baseline. Indeed, subsequent tests show that the above % 
procedure is appropriate. The reasons we want to 
emphasize the importance of baseline measurements and 3o 
at the same time the justification of a small amount of 
baseline adjustments which are not more than the order of 
magnitude of statistical fluctuations of our baseline 
measurements, i.e., ~ 0.2%, are that we then have a larger o o o 
data set available for our analysis and that we no longer 
need to be so very careful so as to accept only those 
measured correlation functions whose measured and 
computed baselines agree to within ~ 0.1 o/. A further test 
on acceptance of a slight baseline adjustment is that, for 
a given PPTA solution, the baseline adjustment must 
decrease rapidly with increasing scattering angle since 
intensity contributions from such large particles are 
important at relatively small scattering angles. In most 
cases, we adjust no more than 0.1% of the measured 
baseline value in order to test its effects on the 
characteristic decay time distribution function G(F). In 
the following typical analysis, we demonstrate our 
procedure first using the multiexponential (equation (5)) 
singular value decomposition method and then the 
method of regularization. 

The Figure la shows an experimental net unnormalized 
electric field autocorrelation function, 

r:(2) T electric field autocorrelation function, bi=-b(z)=Lt, k ( ) 
-A]~/2=[AflIO(~)(QI2] ~/2, for a PPTA ( M , = 4 . 3 ×  
10 '~ g/mole) sample dissolved in 96% HzSO 4 and 0.05 M 
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Figure i (a): A typical net unnormalized electric field autocorrelation 
function. 2.8 x 10-4g/ml PPTA (Mw =4.3 x 104 g/mole)in 96% HzSO 4 
and 0.05 M K2SO 4 measured at 0=45 ° and 30°C using Az = 190#s. (b): 
A relative deviation plot of measured and computed (from equation (5)) 
time correlation function. (c): Characteristic linewidth distribution for 
Fioure la). (A) represent the location of the ?j-functions used according 
to the multiexponential model: G(Fj)= ~_a P~?J(F-F j) by means of the 
singular value decomposition algorithm. The height of each hollow 
triangle has been rescaled according to Pj/Vj in order to account for the 
unequal spacing of the ?J-functions. G(U) as presented is a continuous 
distribution function 

K2SO 4 and measured at C=2.8 x 10 -4 g/ml, 0=45  °, and 
30°C. The 91-decay channel (i=2,92) single-clipped net 
time correlation function (with delay time increments of 
190/~s each) show some fluctuations and suggest the quality 
of data needed to perform a more detailed correlation 
function profile analysis. Figure lb shows the relative 
deviation of the discrete time correlation function, [ b ; -  bl 
(equation (5))]/bi, where the computed bi based on 

1412 POLYMER, 1985, Vol 26, August (Conference issue) 



equation (5) uses a G(F) distribution, as shown in Figure 
lc which was obtained by means of the singular value 
decomposition technique. In Figure lc, we note that G(F) 
has 20 unequally-spaced representative elements [j = 1,20 
in equation (5)] and the P vector is reconstructed from 
k = 3 basis functions. Furthermore, the hollow triangles 
representing the locations of the ,5 functions in the F-axis 
have PjF~ values, not P~ values, along the G(F) axis so 
that a continuous distribution of G(F) can be presented 
from G(F~) = ~ P~,5(F- F~) where the discrete Ffs  are not 
spaced linearly. The procedure for choosing the correct 
number of parameters is illustrated in Fioure 2a, which 
shows a sequence of solutions for k = 2, 3, 4 together with a 
plot of lnll/k)ll(= W) vs. lnllP(k)ll(-Z). Note that k=3  
satisfies our criterion for the best solution. Figure 2b 
shows a series of solutions obtained using the method of 
regularization, equation (27), for various values of~ (~ = 0, 
0.0003, 0.001). We choose the smallest value of ~ so that 
the solution is well behaved at the end points. 

Change of  variables 
From the previous section (Baseline considerations), we 

showed that we can determine G(F) in the time correlation 
function measured at finite concentration and finite 
scattering angle. If F = DK 2, we can easily transform G(F) 
to G(D=F/K 2) at the same finite concentration. 
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Figure 2 (a): Singular value decomposit ion analysis of the data in the 
upper  curve of Fioure 1. Three candidate solutions for k = 2, 3 and 4 are 
shown together with a plot of In Jl rlk~ll( -~ Iv )  vs. In l[ p~k~]l( -= Z)  showing 
why k = 3  is selected as the best possible solution. Numbers  in the inset 
refer to k values. (b) Regularized solution to equat ion (2), for the data in 
Figure la. Solution for various values of ct (solid: ~=0.0003, broken:  
ct = 0 and dashed-dot:  ~t = 0.001 ) show the over smooth ing  that can arise 
if ~t is large. All the regularized solutions have been forced to be positive 
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However, for worm-like chains, polymer molecules of 
even modest molecular weights have fairly large radii of 
gyration so that the condition KR~< 1 is not easily 
satisfied, We need to devise an approach to extrapolate 
G(F) to sufficiently low scattering angles so that the 
condition D = F/K 2 is satisfied. 

Stockmayer and Schmidt z6 considered the effects of 
chain stiffness, branching and polydispersity and 
expressed the characteristic decay time in powers of K2: 

F = DK 2(1 + fRZgK 2) (33) 

where the first-term has the standard K 2 dependence due 
to the translational motions of the centre of mass of 
polymer molecules. At low K, F = DK 2. As K is increased, 
we have an effective increase in the average characteristic 
decay time due to internal molecular motions. The second 
term is proportional to K 4 and depends upon molecular 
size, being proportional to the square of radius of gyration 
Rg z. f is a dimensionless number that in general depends 
on chain structure, polydispersity and solvent power. 

At a fixed scattering angle, we know that the total 
intensity scattered by all the species in the scattering 
volume must be equal to the integrated scattered intensity 
at the same scattering angle. Thus, if we have repre- 
sentative fractions, ~Pj (K)  is proportional to the 

j - i  
excess scattered intensity at K. For a set of G(K,F) 
distributions measured at a finite concentration, we can 
scale j" G(K, F)dF according to the Rayleigh ratio Rw.(K) 
as shown in Figure 3. In view of the fact that there are 
uncertainties associated with the Laplace inversion, we 
need to establish a procedure to identify the corre- 
sponding representative fractions at different scattering 
angles. As the initial lineup, we shall use the relation F = 
D=K2(1 + fR2~ppK 2) where F ( -  j" FG(F) dF) is the average 
linewidth. The other discrete representative fractions 
follow arbitrary linear steps towards left and right of F 
according to (F-Fmi.)/n and (f'm,x--F)/m with n and m 
being the arbitrary number of representative fractions 
which we wish to construct. It should be noted that we 
have two extrapolations which we are making: 

(1) Along the F-axis, we use the relation D*=F/K2= 
((1 + fR~appK2). In a plot of D* v e r s u s  K 2 for different 
representative fractions as shown typically in Fiyure 4, we 
can compute D and fR2,pp for the representative fractions. 

(2) Along the G(F) [or G+(D*)] axis, we can compute 
R2app from plots of 1/G + (D*) versus K 2 as shown typically 
in Figure 5. The superscript + denotes unnormalized 
distribution. 

At finite concentrations, the Rayleigh ratio for worm- 
like chains with molecular anisotropy 5̀ has the 
approximate form: 

1 (1 R2 K2 2A2C H C _ M~pp \ -~ " '~"P~ 4- . . . -~ (34) 

where 

M,pp = (1 + 4/5'52)Mw (35) 

/~pp_(1 +46/5+4`52/7) R~(C) (36) 
1 +4`52/5 

Equations (35) and (36) correspond to equations (6) and 
(8) of Paper 1. By combining corrections for molecular 
anisotropy and finite concentration, we finally get 
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Figure 3 Plots of G+(D *) versus D* for PPTA (Mw =4.3 x 104g/mole) 
in 96% H2SO4 and 0.05 M K2SO 4 measured at 30°C with 0 varying from 
30 ° to 129 °. ~ G(D*)dD* has been scaled according to the angular 
distribution of excess integrated scattered intensity based on equations 
(1) and (7) of Paper I and values of Rg, 6, M~ and A 2 values in Table I of 
Paper I. D* = F/K 2 =D(1 +fReaK 2) where Rga is the apparent radius of 
gyration at finite concentration 
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F i g u r e  4 Plots of D* versus K 2 based on results of Figure 3. Some 
numerical values are tabulated in Table 1 

R](O)=R2(C)(1 4- 2A2MwC ( ] ~ ) /  (37) 
\ 

From equation (34), we can retrieve equations (7) and 
(9) of Paper 1 by extrapolation to C = 0  and 6=0 ,  
respectively. The above equations are the fundamental 
relations in light scattering intensity measurements which 
we need to connect with the light scattering characteristic 
decay time distribution when we change G(F) versus F, as 
shown in Figure lc, to G(D*) versus D*, as shown in 
Figure 3. 

At infinite dilution, we have for a continuous 
distribution 

.(G(K,F) dF = .f G(K,F)K 2 d(F/K 2) =.f G(D*) dD* (38) 

where D* = F/K z = Do(1 2 2 + fRg,appK ) a n d  G(D*) = 

G(K,F)K 2. By equating J" G+(K,F)dF  with Rw(K), we 
take into account the integrated intensity scattered by all 
molecular species since at infinite dilution 

R~(K),,, ~ Fn(M)M2p(K) dM (39) 

where Fn(M) and P(K) are the number distribution and 
the particle scattering factor. The ,-~ sign denotes that we 
are not concerned with the proportionality constant and 
that we have assumed the molecular anisotropy to be 
independent of molecular weight. According to the 
empirical relation Do =koM-~D and equations (38), we 
have 

dD*= -ko~oM -(~°+ 1)(1 + fR2.~ppK2)dM (40) 

Thus, 

o r  

P(K) 
fG+(O*)dD*..~f(l+ fP~appKZ)dO* (41) 

1/G + (D*)--~ 1 + fP~.ppK 2 
P(K) 

1 + ( f+ 1/3)R2.ppK 2 + O(K 4) (42) 

where the superscript + is introduced to emphasize that 
the scaled characteristic diffusion coefficient distribution 
is no longer normalized. By combining equations (33) and 

Table 1 Numerical values of arbitrary representative fractions of a PPTA solution based on Figures 1-5 

Fraction No. D (10 - s  cm 2 s 1) M (104g/mole) R~a ( I0-I I  cm2)a R~ (10-11 cm2)b f 

4 0.305 13.2 2.7 3.5 0.23 
5 0.375 10.0 2.2 2.8 0.22 
6 0.444 7.98 1.8 2.4 0.22 
7 0.514 6.57 1.6 2.1 0.22 
8 0.584 5.55 1.5 1.9 0.21 
9 0.653 4.77 1.3 1.7 0.21 

10 0.723 4.17 1.2 1.5 0.20 
I 1 0.793 3.69 1.0 1.3 0.20 
12 0.863 3.29 0.92 1.2 0.20 
13 0.934 2.97 0.82 1.1 0.19 
14 1.00 2.69 0.72 0.93 0.19 
15 1.07 2.46 0.65 0.84 0.19 
16 1.14 2.26 0.56 0.73 0.19 
17 1.21 2.09 0.50 0.64 0.19 
18 1.28 1.94 0.44 0.57 0.19 
19 1.35 1.81 0.39 0.50 0.19 
20 1.43 1.69 0.34 0.44 0.19 

" Re, a is the apparent radius of gyration at finite concentration without correction for molecular anisotropy 
b Rg is the radius of gyration at infinite dilution after correction for molecular anisotropy 
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Figure 5 Plots of 1/G +(D*) versus K 2 based on results of Figure 3. 
Some numerical values are tabulated in Table 1 
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Figure 6 Plot of R~ versus M based on values of R~a listed in 
Table 1 with R~(0)=[I +2AzMC/( I  +62/5)][(1 +462/5)/(1-46/5 + 
46z/7)]Rgapp. Solid line denotes R~=l .22x  10 ~8M~5 cm 2 with 
M expressed in g/mole. If we take R~=pZ l4p /3 - 1+2 / (L /p )  - 
[2/(L/p)2](1- exp ( - (Up) )  } where L= 12.9M/238 with M expressed in 
[g/mole], we note that ( . . . .  )p=240A,  l -  . - )p= 290 A, ( )p=340 A. 
From the G(F) distribution function, Rg 2 values are more 
reliable in the higher characteristic frequency regime because of 
shallower slopes in Figure 3. Thus, we estimate p ~ 290/~. (R~) ~ values 
from light scattering intensity measurements are also presented as solid 
circles. It should be noted that R~ values from Table 1, as denoted by 
hollow squares, are those of representative monodisperse fractions in a 
polydisperse sample while ( R  z, as denoted by filled symbols, are z- 
average values of polydisperse samples. Filled circles denote PPTA in 
96?, ~, H2SO4; filled diamonds, PPTA in 96°,,~ HzSO 4 

(42), we can determine both f and 2 Rg,app. W e  have  b e e n  

able to determine f for different representative molecular 
weight fractions of PPTA within the polydisperse sample 
at finite concentrations as listed in Table 1. 

From Table 1, if we take 2 1 Rg,app = 1.3 x 10-1 c m  2 for 
fraction 9 where M = 4 . 8  x 104g/mole and 620 .2 ,  we can 
compute R* 2 (C) - [( 1 + 462/5)/( 1 - 46/5 + 462/7)] RE,vp = 
1.55 × 10-1 ~ cm 2 (or R~* = 39 nm at C = 2.8 x 10- 4 g/ml) 
or Rg(0) = Rg*(C)[l +2AEMC/(1 +&52/5)]x/2-~41 nm, 
which is in reasonable agreement with values listed in 
Table 1 of Paper I. Figure 6 shows a plot of  R 2 versus M 
based on values 2 of Rg.app listed in Table 1. In the plot we 

2 2 have corrected Rg,app to the radius of gyration Rg at infinite 
dilution. If we take eo = 0 .75 , /~  = kRM L5 as shown by the 
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solid line ( ) in Figure 6. However, over the molecular 
weight range of the polydisperse PPTA sample (M~ = 
4.3 x 104g/mole), the worm-like chains behave more like 
rods at lower molecular weight fractions but become 
more coil-like at higher molecular weights. Therefore, no 
single exponent can closely depict Rg(M) behaviour, as 
shown typically by the dashed curve for worm-like chains 
with a persistence length of 290_+ 50 A. 

Figure 7 shows a plot of f versus L/A with L and A being 
the contour length and the Kuhn length, respectively. We 
have taken L= 12.9 M/238 A and A=2p=580 A. The 
values of f which we have determined are those from 
representative fractions of our polydisperse PPTA sample 
without actual fractionation. Its agreement with estimates 
predicted by Stockmayer and Schmidt 26'2v is amazing. 
We do not claim its precision to warrant a test on the form 
of f as a function o f / J A  at this time. Nevertheless, the 
result illustrates such a possibility and lends confidence to 
the procedure we have devised in extrapolating G(F) to 
G(D). It should also be emphasized that we have actually 
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Figure 7 Plot of f versus L/A where L and A are the contour length 
and the Kuhn length, respectively. L =  12.9M/238[,~] with M expressed 
in [g/mole]. A = 2p_~ 580/~ with p taken to be 290 ,~. Insert represents 
Figure 3 of Stockmayer and Schmidt 26 (upper curve) for various 
approximate models of worm-like chains and curve A in Figure 2 of a 
recent paper by Schmidt and Stockmayer 2~ (lower curve). Notations A, 
C, D, E correspond to P0m AGKn, AGKp, HBH in Figure 3 of ref. 26. B 
corresponds to a portion of A in Figure 2 of ref. 27. The stars denote the 
measured f (at finite concentrations) 
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Figure 11 Molecular weight distributions of  the same PPTA solution 
using two different methods ('singular value decomposition technique' 
and 'methods of regularization'). Hollow squares denote multi- 
exponential singular value decomposition method. Inverted hollow 
triangles denote method of regularization. The two distributions exhibit 
similar M=:Mw:M . ratios. A small high molecular weight tail remains 

determined some effective values of f at a finite concen- 
tration. The f values should decrease with decreasing 
concentration. We plan to discuss this point in a future 
publication. In the insert of Figure 7, we have plotted our 
measured f (at finite concentration) as stars in Figure 3 of 
Stockmayer and Schmidt 26 and in Figure 2 of Schmidt 
and Stockmayer 27 for various approximate models of 
semiflexible chains. The shaded areas represent their 
estimate of the correct curve. The agreement in the trend, 
and even in the magnitude, is remarkable. Our apparent 
values appear to be in closer agreement with the earlier 
'polydisperse' curve, while f(C---,O) should in fact agree 
more closely with their later estimates, without even 
worrying about the molecular diameter. 

In order to compute the translational diffusion 
coefficient at infinite dilution, we have estimated the 
concentration effect to be relatively small with D =  
Do(1 + 60C) with C expressed in [g/ml]. Thus, at C = 6 × 
10- 4 g/ml the correction term corresponds to less than 4% 

It is, therefore, certainly appropriate to assume the 
diffusion second virial coefficient to be independent of 
molecular weight for this correction. By using the 
extrapolated (K---,0) values of G ÷ (D*) from Figure 5 and 
of Do from Figure 4 and the concentration correction, we 
have obtained a tramslationai diffusion coefficient distri- 
bution function in the absence of interactions and intra- 
molecular interference effect. 

Molecular weight distribution 
Having computed G + (Do) at infinite dilution and 'zero' 

scattering angle, we can make use of the empirical relation 
Do = koM-o.75 from Paper I and determine the molecular 
weight distribution. Again, it should be noted that the 
exponent ~o = 0.75 represents an effective value over the 
molecular weight range we have studied in Paper I. For 
smaller molecular weight fractions, ~o should approach 1, 
while for larger molecular weight fractions, ~o should be 
less than 0.75. Nevertheless, over the usual range of 
interest for PPTA solutions using 96% H 2 S O  4 a s  the 
solvent, the ~o value of 0.75 is probably a fairly good 
compromise. On the G(Do)-axis after correction for 
intramolecular interference, we take 

G(Do)oCM2Fn(M) (43) 

With F,(M)= MFn(M), Figure 8 shows the weight distri- 
bution of PPTA (M,=4.3  x 10 4 g/mole) using inde- 
pendent results from two solutions at C = 2.8 x 10-4 and 
5.8 x 10 -4 g/ml. The analysis for the PPTA solution at 
C = 2.8 x 10 -4 g/ml has been presented in detail as shown 
by Figures 1-7. For a separately prepared PPTA solution 
at C=5.8 x 10-4 g/ml, we follow the same procedure and 
present only its final result as shown in Figure 8. The 
agreement between the two preparations following the 
same procedure is remarkable. In examining Figure 8 
closely, we have noted several surprises. 

(1) The molecular weight distribution is not as broad as 
we originally anticipated. M= :M, :M, -~ 6.1:1.8:1. In mak- 
ing the molecular weight transform, we have taken 
Do=koM -°'75 and adjusted ko (=2.07 x 10 -s) so as to 
make the computed Mw equal to M,  =4.26 x 104 g/mole, 
the value determined by light scattering intensity 
measurements. As/9o=2.11 × 10 -5 M w  °'75 c m  2 s - 1  with 
M,  expressed in g/mole for PPTA dissolved in 96% 
H2SO4, the adjustment in ko corresponds to 
(4.26/4.83)°"752.11 x 10 -S~ l .94x  10 -5, a 7% decrease. 
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Thus, the molecular weight transform uses an empirical 
relation which is consistent with intrinsic viscosity results 
and with cumulants analysis for D=. We have also taken 
0to( = 0.75) for PPTA in 96% H2SO4 + MK2SO4 to be the 
same as that in 96% H2SO4. Figure 6 seems to suggest that 
p is somewhat higher in the absence of salt. Then, MWD 
would have been slightly broader. 

(2) The molecular weight distribution has a high 
molecular weight tail. While it is possible that small 
amounts of aggregation can produce a long tail since our 
Laplace inversion technique may not be able to resolve a 
small bump at the high molecular weight end of the 
molecular weight distribution, we shall formulate the 
problem slightly differently, i.e., given the solution, can the 
high molecular weight tail be produced as an artifact of 
our Laplace inversion technique? In this respect, we 
should also be interested to know the low molecular 
weight limit of the molecular weight distribution. In 
Figure 1c, it is the lower F region which produces the high 
molecular weight tail. Figure 9 shows a re-analysis of G(F) 
by arbitrarily changing upper and lower limits, Fmi n and 
Fm,x. It appears that the tail in the high molecular weight 
region falls within the uncertainties of the errors in the 
baseline. In order to obtain a true indication of the extent 
of the molecular weight distribution we have found an 
integrated plot, Figure 10, to show very clearly that the 
highest molecular weight fractions do not extend beyond 
105 g/mole. Integrated weight fractions of PPTA having 
molecular weights greater than 5 x 105g/mole are less 
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than ~ 1% of total weight. This high molecular weight tail 
will become somewhat longer if % becomes less than 0.75 
with increasing molecular weight. 

Figure 11 shows a comparison of the molecular weight 
distribution obtained using the two different methods of 
time correlation function profile analysis described in the 
paper. 

CONCLUSIONS 

We have succeeded in characterizing PPTA in concen- 
trated sulphuric acid. By combining static and dynamic 
properties of PPTA and the use of appropriate Laplace 
inversion techniques, we were able to determine, for the 
first time, the molecular weight distribution of PPTA. The 
laser light scattering technique offers a new analytical 
approach to size exclusion chromatography which is 
difficult to perform for polymer solutions in corrosive 
solvents. 

Once we have established the effects of interference and 
of concentration, it is no longer necessary to perform the 
detailed analysis which we have presented. We need only 
to make one time correlation function measurement at 
one fixed concentration and one scattering angle, and to 
correct for the effects of concentration and of interference 
before performing the Laplace inversion and molecular 
weight transform. Figure 12 shows the scaling of concen- 
tration effect at constant scattering angle. Figure 13 shows 
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the scaling of  interference effect at  cons tan t  concentra t ion .  
The close over lap  of cor re la t ion  funct ions clear ly 
i l lustrates  tha t  we can compensa t e  for such effects based  
on  k n o w n  exper imenta l  da t a  which are  essential ly con-  
s tant  in a given po lymer  system. Fu r the rmore ,  as G(F)  i s  
related to the shape of  1O"~(T)I, we can examine  shifts of  
sizes and  its var iance  by  examining  the changes  in 1O ~1)(~)[ 
wi thou t  the use of  Lap lace  invers ion a lgor i thms.  Thus,  
laser light scat ter ing can be deve loped  and  used as 
mon i to r s  for po lymer  character is t ic  changes  in solut ion,  
for po lymers  such as  P P T A .  
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